第五十章 傅立叶级数
叮铃铃!
上课铃声响得很及时,看热闹的同学们个个都放下了瓜,及时缩回到自己的桌子后。
踏着上课铃的尾声,胖的快要赶上大白熊的奥特老师走进教室,将公文包扔到桌上,左插在口袋里,身体斜侧,右肘撑在演讲台上支撑着自己的身体,像帅哥一样右一拔自己的秀发,问道:“有人做出那道题了吗?有的话我这节课给你满分!”
前排的学生回过头来,中间的学生侧过身子,一百多人的目光同时集中到亚历山大身上,还没等他有所表示,范宁就搂着他的肩膀站起来大声喊道,“老师!亚历山大解出了那道题!”
“喔喔喔!我就过,微积分这种题目难不倒我们英勇的学生。”奥特老师露出开心而得意的笑容来,一边鼓掌一边道,“以前从没有见过你,你是新来的交换生吗?”
“很遗憾奥特老师!我是本校的一年级生亚历山大,塞隆老师推荐我来听您的课。”亚历山大微笑着回答。
“哦哦,亚历山大,我听过你的名字,连布鲁斯神父都认为你是可造之材。”奥特老师打了一个响指,欣然道:“你曾经编织的法术模型令人印象深刻。”
“谢谢老师的夸奖。”亚历山大礼貌地回应。
“把你的答案拿来看看!”奥特老师勾勾指,“让我猜猜看,你解这道题是用了欧拉的公式还是拉普拉斯的最新研究成果?”
要解决奥特老师所留下的那道难题就必须在偏微分上有相当高的造诣,偏微分的建立还没有多久,会的人并不多,精通的就更是少之又少了。这时的偏微分争论,正是丹尼尔、欧拉与达朗贝尔之间的关于弦振动可允许的解的争论,后来拉格朗日、拉普拉斯也加入了争论,但前者重复了许多欧拉的工作,后者则站在达朗贝尔一边。
虽然是在世纪,三者争论激烈而广泛,但究其实质,达朗贝尔、丹尼尔与欧拉之间的争论的主要问题就是能否用正弦函数、或更进一步地,用傅立叶级数表示函数类的宽窄。他们的争论都只是触及了这个问题的某一方面。
“呃,主要还是欧拉的公式。”亚历山大用法师之把笔记本递了过去。
世纪最伟大的数学家欧拉,如今依然以传奇法师的身份生活在半位面之中,依然在孜孜不倦的工作。
但波动方程欧拉还真的不能是对了,虽然他也是这一门显学的创立元老。奥特老师的问题,其本质其实就是波动方程,因此最好的解决办法其实是傅立叶级数。可是傅立叶级数压根还没有现世呢,连个伪定理都没有——丹尼尔倒是想这样做,可惜数学基础还是不行,一直没成功。
概括而言,丹尼尔认为可以通过三角级数来进行描述弦振动;达朗贝尔和欧拉否认三角级数的作用,主张通过偏微分方程的方式解决弦振动问题,欧拉则提出了不连续函数的概念,允许非常一般的初始曲线,达朗贝尔则不认同。
三个人之间各执一词,相互争论了十几年,后来拉格朗日以及拉普拉斯也加入了争论,拉格朗日其实在很多事情上重复了欧拉他们的工工作,他也否认三角级数能够示任一解析函数,更不用更加任意的函数了。
其实他们之间的观念并非全都正确,但是也并没有完全错误,归结而来,其实就是用三角级数来表示一个任意函数这一重要问题,而这个问题的解决则是傅立叶来完成的。
()(e) 终结这个问题的是另外一位大神级数学家,他有一个令广大学子闻风丧胆、毛骨悚然的名字——傅立叶。傅立叶提出的傅立叶级数与拉格朗日的观点相违背,傅立叶认为不论定义在(π、π)上的函数f()是如何任意,它一定可以用一個无穷三角级数表示出來。这与拉格朗日在处理弦振动问题时候否定三角级数的观点相矛盾,所以拉格朗日认为傅立叶的研究并不严谨。
后来,傅立叶经过多年的努力,在22年提交了著名的热的解析理论,它标志着傅立叶级数和傅立叶积分的证实诞生。
傅立叶在这篇文章中正式提出,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的)。
傅立叶级数的提出从根本上动摇了旧的关于函数概念的传统思想,3年,狄利克雷给出了与我们现在所熟知的函数定义非常相近的函数的如下定义(区间一般是指两个实数之间的所有实数):
如果对于给定区间上的每一个值,都有唯一的y值与它对应,那么y是的函数。
可以傅立叶级数的提出和新函数概念的提出,彻底解决了弦振动问题,只要是自然界的周期运动现象,都可以通过傅立叶级数来表示。简单来,把一个周期运动分解为简谐振动的迭加,反映在数学上,是把一个周期函数f(t)表示为各类正弦函数的迭加。
没错,这就是把广大学子虐得鬼哭狼嚎、魂飞魄散的博立叶级数!
“欧拉公式?”奥特老师的点头,“看来你在偏微分学得还比较深。”
欧拉在偏微分研究得最深,无论是弦振动,还是波动方程的推广和流体动力学的创立,欧拉都居功至伟,就连偏微分方程的纯数学研究,欧拉也是第一个。
亚历山大最近在图书馆泡得时间长,确实是看过欧拉在波动方程方面的论著,当时就惊为天人。虽然因为时代的限制,欧拉拒绝了弦振动的三角函数,但在偏微分方面却闪烁着耀眼的光辉。
“让我看看!”奥特老师接过笔记本看了起来,这一看就是十来漏分,嘴里不停的嘟囔着,“出人意料的想法,和我准备的答案是完全不同的思路,不过这种方法更简洁也更具开创性!在偏微分的应用上似乎比拉斯普斯先生走的更远!”
能不远嘛,他重新推导了几个结论,然后用在了自己的文章当中,虽然不能从根上解决波动方程的问题,但确实是解决了奥特老师提出的问题,还让整个解题过程都升华了。
半晌之后他合上笔记本,“你有没有想过把解题的过程写成论文发在应用数学和力学上?”
“哇喔!”奥特老师的话音刚落,教室里响起一片羡慕的低呼。
对于中学生来讲,刊出论文什么的简直就是天方夜谭,而且还是在应用数学和力学上刊出论文,尤其是加贝斯第一海军中学也算不上什么强校,别在欧洲、荷兰,就算是泽兰省也只是一般。应用数学和力学是由klwerade出社出,国际上实力一般,但放在荷兰也算是中上了。论档次,可比亡者不亡高多了,毕竟国际数学还是要看欧洲大陆的。而在加贝斯城,拿着一本刊有自己文章的应用数学和力学可以敲开任何一所学院的数学或者工程学办公室,从而轻松获得教职。
()(e) 奥特老师在数学界虽然谈不上大牛牛,但也不是普通角色,推荐亚历山大的论文到应用数学和力学还是有几分把握的。因为这份杂志,本来就与他的母校关系甚深。而亚历山大完成的成果也确实是与众不同,有一定的学术价值。
对亚历山大来这同样是一个会,因为他在瞬间就领悟了一个真理。
发表论文?亚历山大忽然有一种醍醐灌顶的感觉。对啊,还可以灌水哦,是写论文。这个世界,写论文是可以赚钱的啊,而且钱还不少,法师有的是钱,给钱也痛快。
数学家虽然不一定是法师,但法师一定是数学专业的。
所以,他很严肃地点了点头。
也就在这时,他的耳边再次响起女神的呼声。
系统提示:新任务获取。勇敢的少年,美丽的女神正在远方注视着你,勇敢的少年啊,快去创造奇迹
学术任务:在女神的关照下,你已经茁壮成长,现在是时候展现你魔法能力了,让整个魔法界都在你的冲击下瑟瑟发抖吧。
要求:三个月内发表0篇sci论文,并且被成功收录。提前完成可提前结束任务,并提升评价。任务失败,扣除一点智力。
任务奖励:每篇论文固定奖励五百经验值,根据论文质量追加经验值;学霸积分,一篇20;一次黄金抽奖会。
亚历山大:还有这种好事?就是0篇论文有点多啊。扣一点智力也比较坑!
不对,不对。问题的重点是,巨环世界也有sci?亚历山大有点绝望,走到哪里都摆脱不了sci的阴影啊。
“非常乐意,先生!”亚历山大干净利落地答道,心里已经在盘算着这一篇论文会给自己带来多少收益了。
0篇论文是有些多,而且时间还有限。但这要看怎么个写法,根据著名的灌水大法,如果一篇论文不够,通过灌水可以轻松灌出上百篇论文来,投给不同的期刊就行。
“你把论文整理一天,后天下午三点钟来我的办公室!”奥特老师将笔记本还给亚历山大,“好了,我们现在该上课了,刚才耽误的已经够久了!”
“阿历,你能不能带我一起去见奥特老师?或者帮我看看论文也可以?”回到座位上,范宁贝朗声地问道,“我还想触摸更深层次的魔,如果这个学期没有一篇够分量的论文,很难获得那些导师的欣赏。”
这位老兄看来是被那篇论文折磨的够呛,就算是有黑蘑的帮助心中仍然害怕,都求到亚历山大这边来了。
“很乐意向您效劳!”亚历山大虽然这样,但可真没有打算引荐给奥特老师。他现在也只是刚和奥特老师搭上关系,贸然引荐他人或许会给他留下不好的印象,还是自己多花点时间看看论文吧!
一个学生论文能有多难?